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In this article, we reappraise the well-known equation of motion for a pipe conveying viscous fluid. We
utilize prominent principles of fluid mechanics such as Navier-Stokes’ equation as well as several bench-
mark references in the field of fluid-structure interaction (FSI) to reveal that the viscosity of the fluid flow
should not appear explicitly in the equation of motion of pipe conveying fluid. Based on this result, we
could develop an innovative model for one dimensional coupled vibrations of carbon nano-tubes (CNTs)
conveying fluid using slip velocity of the fluid flow on the CNT walls as well as utilizing size-dependent
continuum theories to consider the size effects of nano-flow and nano-structure. Therefore, this innova-
tive coupled FSI equation suggests that CNTs conveying nano-flow remain stable for higher velocities. In
the other words, the critical average velocity of the fluid flow at which the divergence instability occurs,
should be greater in comparison with the critical velocity predicted by the models used plug flow and
classical continuum theories.
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1. Introduction

Carbon nano-tubes (CNTs) are becoming the most promising
material for nano-electronics, nano-devices and nano-composites
because of their enormous application such as nano-pipettes, actu-
ators, reactors, fluid filtration devices, biomimetic selective trans-
port of ions, targeted drug delivery devices, scanning molecule
microscopy, and scanning ion conductance microscopy [1-4]. In
this regard, a remarkable number of studies have been accom-
plished to disclose the vibrational behavior of such nano-structures
conveying fluid. Tuzun et al. [5], Amabili et al. [6], Yoon et al. [7],
Natsuki et al. [8], Wang et al. [9], Xia et al. [10] and Wang and Qiao
[11] made important contributions in this practical area. In this re-
search, we would undertake a reevaluation for computational
modeling of carbon nano-tubes conveying viscous fluid with some
fresh insights as well as we try to develop an innovative one
dimensional (1D) coupled fluid-structure interaction (FSI) equa-
tion by considering slip condition on the nano-tube wall. Khosravi-
an and Rafii Tabar [12] studied the flow of viscous fluid through a
carbon nano-tube and established a new equation of motion of
pipe conveying fluid by considering the viscosity effect. They found
that a nano-tube conveying a viscous fluid was more stable against
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vibration-induced buckling than a nano-tube conveying a non-vis-
cous fluid. Wang and Ni [13] reappraised the computational mod-
eling of carbon nano-tube conveying viscous fluid represented by
Khosravian and Rafii Tabar [12] and then corrected the FSI equa-
tion and disclosed that the effect of viscosity of fluid flow on the
vibration and instability of CNTs could be ignored. Lee and Chang
[14] analyzed the influences of nonlocal effect, viscosity effect, as-
pect ratio, and elastic medium constant on the fundamental fre-
quency of a single-walled carbon nano-tube (SWCNT) conveying
viscous fluid embedded in an elastic medium. They revealed that
the frequency increased as the values of the viscosity parameter in-
creased. Soltani et al. [15] developed a transverse vibrational mod-
el for a viscous fluid-conveying SWCNT embedded in biological soft
tissue. Their investigation determined that the structural instabil-
ity and the associated critical flow velocity could be affected by
the viscosity of the fluid and the nonlocal parameter. Khoddami
et al. [16] studied electro-thermo nonlinear vibration and instabil-
ity of embedded double-walled Boron Nitride nano-tubes
(DWBNNTSs) conveying viscous fluid based on nonlocal piezoelas-
ticity theory. They reported that increasing the small scale param-
eter decreased the real and imaginary parts of frequency and
critical fluid velocity. Furthermore, they concluded that the effect
of fluid viscosity on the vibration and instability of DWBNNTSs
might be ignored. In many recent studies various size-dependent
continuum theories have been developed for vibration and stabil-
ity analysis of CNTs conveying fluid. Lee and Chang [17], Zhen
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and Fang [18], Jannesari et al. [19] included the effect of small-size
into equations of motion by using nonlocal elasticity in their stud-
ies and showed that increasing nonlocal parameter had the effect
of a decrease in the critical velocity of fluid. Ke and Wang [20]
investigated vibration and instability of fluid-conveying double-
walled carbon nano-tubes based on modified couple stress theory.
They showed that the imaginary component of the frequency and
the critical flow velocity of the CNTs increased with an increase in
length scale parameter. Wang [21] developed a theoretical analysis
of wave propagation of fluid-conveying single-walled carbon nano-
tubes based on strain gradient elasticity theory. He showed that
the use of gradient elasticity theory had a dramatic effect on dis-
persion relation. Wang [22] utilized nonlocal elasticity theory inte-
grated with surface elasticity theory to analyze dynamic response
of nano-tubes conveying fluid. He revealed that fundamental fre-
quency and critical flow velocity predicted by his new model was
generally higher than that predicted by the Euler-Bernoulli beam
model without surface effects. Some recent studies developed to
consider the small size effects of nano-flow as well as slip bound-
ary condition on nano-tube wall. For instance, Rashidi et al. [23]
presented an original model for a single-mode coupled vibrations
of nano-tubes conveying fluid by considering the slip boundary
conditions of nano-flow quantified by Knudsen number (Kn). They
reported, for the passage of gas through a nano-pipe with nonzero
Kn, that the critical flow velocities could decrease considerably in
comparison with a liquid nano-flow. Mirramezani and Mirdamadi
[24] investigated coupled-mode flutter stability of nano-tube con-
veying gas and liquid nano-flow for different beam boundary con-
ditions and multi-mode analysis. They observed that coupled-
mode flutter might occur much sooner by considering slip condi-
tion than that predicted by continuum theory. Kaviani and Mirda-
madi [25] studied the wave propagation phenomena in CNT
conveying fluid. The CNT structure was modeled by using size-
dependent strain/inertia gradient theory of continuum mechanics,
the CNT wall-fluid interaction by slip boundary condition and
Knudsen number (Kn). They reported that Kn could impress com-
plex wave frequencies at both lower and higher ranges of wave
numbers, while the small-size had impression at the higher range.
Mirramezani and Mirdamadi [26] investigated the effect of nano-
size of both fluid flow and elastic structure simultaneously on
the vibrational behavior of a nano-tube conveying fluid using both
Kn and nonlocal continuum theory. It was observed that the non-
local parameter would have more effect than Kn on the reduction
of critical velocities of a liquid nano-flow. This effect had consider-
able impact on the reduction of critical velocities for a clamped-
clamped beam in comparison with a pinned-pinned one. Kaviani
and Mirdamadi [27] considered the coupled effects of Kn and slip
boundary condition on the viscosity of a nano-flow passing
through a nano-tube. Kn-dependent viscosity could affect both di-
rectly on viscosity values and indirectly on a dimensionless param-
eter, velocity correction factor, VCF, defined as the ratio of no-slip
flow velocity to slip flow velocity on the boundaries of a nano-tube.
They concluded that the effect of viscosity on the critical flow
velocity could be so large that for a specific numerical study could
reach one-fourth of that velocity, by ignoring the viscosity effect on
slip boundary condition. Matin et al. [28] studied the effects of
nonlocal elasticity and slip condition on vibration of nano-plate
coupled with fluid flow. They reported that the effect of nonlocal
parameter would be considerable for plate lengths less than
50 nm as well as when the fluid is a liquid, most of the contribution
in decreasing critical flow velocity is due to nonlocal parameter but
when the fluid is a gas, Kn has a greater role in decreasing the crit-
ical velocity.

A partial objective of this study is to reappraise the equation of
motion of pipe conveying viscous fluid extracted by Khosravian
and Rafii Tabar [12]. In this article, we utilize basic principles of

fluid mechanics such as Navier-Stokes’ equation; moreover, we
benefit from some valuable classical works in the field of FSI to re-
veal that the viscosity of the fluid flow should not appear explicitly
in the equation of motion. Furthermore, we propose a novel model,
for 1D coupled vibrations of carbon nano-tubes (CNTs) conveying
fluid, taking into account the slip boundary condition using Knud-
sen number as well as size-dependent continuum theories such as
strain/inertia gradient and nonlocal theories. It could be seen that
the current model by considering the size effects of nano-flow and
nano-structure, the critical mean flow velocity at which the diver-
gence-type instability might occur, could differ remarkably from
that of a plug flow model for the fluid flow.

The remainder of this study is organized as follows: In Section 2,
we reappraise the equation of motion of pipe conveying viscous
fluid. In Section 3, we develop an innovative 1D coupled FSI equa-
tion by considering slip condition and size-dependent continuum
theories. In Section 4, we implement the Galerkin weighted-resid-
ual solution technique and solve the partial differential equations
of nano-tube vibrations. In Section 5, we discuss stability analysis
and present the results. Finally, in Section 6, we express our
conclusions.

2. Reappraise the equation of motion of pipe conveying viscous
fluid

The flexural vibrations of an Euler-Bernoulli beam subjected to

an external force can be modeled via the following equation [29]:
M A%

—W"rch:Fext (1)
where x is the longitudinal coordinate of tube elastic axis; m,, the
CNT mass per unit length; W is the flexural displacement of the
CNT wall; t, time; F.y is the transversal external force acting on
the beam due to the flowing fluid and M is the bending moment.
The bending moment for an Euler-Bernoulli beam is given by:

o*w

M= —El~; (2)

where E is Young’s modulus and I is the moment of inertia of area
cross section. In the following part of this section, we benefit from
the well-known Navier-Stokes’ equation to compute the Fey ex-
erted by the fluid flow on the wall of CNT conveying viscous fluid.

2.1. A brief review on fluid mechanics

We consider an incompressible, laminar, infinite and viscous
fluid flowing through the CNT. The momentum-balance equation
for the fluid motion may be described by the well-known Na-
vier-Stokes’ equation as [30]:

DV — -
pPpr=-VP + UV2V + F pogy 3)
where D/Qt is the material or total derivative and V is the flow
velocity, P and u are, respectively, the pressure and the viscosity
of the flowing fluid, p is the mass density of the internal fluid,
and F 4,4, represents body forces. The body forces are due to exter-
nal fields like gravity, magnetism an electric potential, which would
act upon the entire mass within the body. We neglect these effects
and ignore the body forces. In the following equations, we concen-
trate on how to compute the F.,; exerted by the fluid flow on the
wall of CNT conveying viscous fluid using basic principles of fluid
mechanics to modify the equation of motion extracted by Refs.
[12,13]. According to the reference [30] the total force exerted on
the differential element of the fluid in each direction can be com-
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puted by the differential equation describing the linear momentum
of the fluid flow as follows:

—

dF = 0 %—‘t/ dxdydz (4)

It is noted that this is a vector relation and shows that the resul-
tant force in each direction is obtained from multiplying the mass
element by the material derivative of velocity vector in that direc-
tion. The force resultants on the differential element of the fluid are
of two types, body forces and surface forces. The only body force
considered in this study is the gravitational force exerted on the
differential mass within the control volume, which is defined as
follows [30]:

d?gravity = P?dXdde (5)

The surface forces are due to the stresses exerted on the sides of
the control surface. For example, the net surface force along the z
direction is given by [30]:

0 0 0
F = (a3 (0) + (0 + 11 (0:) ) vy ©

Then we can split down this force into pressure parts plus vis-
cous stresses [30]:

oP 0 0
sz,surf - <_ & + a (sz) + @

Then we could say that [30]:

(1) + % (Tzz)>dxdydz )

dF, = pg,dxdydz

oP 0 0 0
+ (—&Jr&(rxz) +@(ryz) +&(Tzz))dxdydl (8)

If Eq. (8) is substituted into Eq. (5) and the components of veloc-
ity vector along x,y and z directions are denoted by u,» and w
respectively, we have along the z direction [30]:

6_W+u8_w+va_w+wa_w
Plac "Hax TPy T Wz
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It should be noted that the effect of viscosity due to the fluid
flow appears in Eq. (9) resulting from shear stresses that have a
direct relation to viscosity. We conclude from above equations
and the linear momentum balance law that the force resultant
in each direction could be calculated by the material derivative
of the velocity vector in the corresponding direction, or in an-
other way, this force could be similarly calculated by summing
the pressure gradient and the viscous stress in that direction.
In other words, both the right and left hand sides of Eq. (9) rep-
resent the force resultant in the z direction but in two different
ways.

2.2. A reappraisal modeling of CNTs conveying viscous fluid

According to the previous brief review of fluid mechanics, from
now on we initiate to reappraise the equation of motion of pipe
conveying viscous fluid given by references [12,13]. According to
Eq. (1) we have to determine F,, exerted by the fluid flow on the
walls of CNT conveying viscous fluid in the lateral direction. In this
way, we utilize Eq. (3) and we need to determine the velocity vec-
tor of the fluid flow. Therefore, the compatibility condition at the
point of contact between the nano-tube and the internal fluid
would require that their corresponding velocities and accelerations
along the direction of flexural displacement become the same.
These conditions can then be written as:

DW
Vr = D7t (10)
and
DV, D’W
P )
where
D 0 0

It should be noticed that due to applying a compatibility condi-
tion on the CNT wall, V,(r) is the velocity of the fluid flow on the
CNT wall. By using Eqgs. (10)-(12) and substituting them into the
left hand side of Eq. (3) as well as multiplying all the terms by
the cross sectional area of the internal fluid, A; we could reach to
the following equation:

2 2 2
DV, PW , PW aw) 13)

PADE = PA <2Vx(r) oot TV e T

and the right hand side of Eq. (3) by considering a cylindrical coor-
dinates as well as replacing z by r, can be computed as:

A ( op + 92 (Txe) + 92 (Tyz) + 9 (rzz)>

S0z ox ay 0z
0P, FwW FwW
= A A <8x28t TV G (14)

Now we can rewrite the momentum-balance equation for the
Newtonian fluid motion in the lateral direction as follows:

P, ’PwW PW
FZ:AirJrAiu( + V(1) )

or X2t ox3
= pAi( 2V (r)—aZWJrv (r)282W+—aZW (15)
— PR\ ke TV T T e

According to the previous discussion about momentum-balance
equation, it should be noticed that both Eqs. (13) and (14) repre-
sent the net force acting on the fluid element in the lateral direc-
tion in the same way. It would rather be declared that Eq. (13)
would represent the net force generated by lateral acceleration of
CNT and the longitudinal velocity of the fluid flow; while Eq. (14)
could represent the same force by the pressure gradient and vis-
cosity of the flowing fluid. We could use Eq. (13) or Eq. (14) inter-
changeably representing —F,,, in Eq. (1), because the forces acting
between a fluid element and a neighboring CNT wall could be
implemented as action and reaction forces in opposite directions.
Consequently, the equation of motion of CNT conveying viscous
fluid can be written as:

El

o*'w ’wW >PwW LW PW _o
<o oxot B

W+m —+mf<2Vx(r)—+VX(r) e T
(16)

where pA; is replaced by the fluid mass per unit length, mand
V() is the velocity of the fluid flow in the longitudinal direction
on the CNT wall. If we would consider a plug flow in a pipe
conveying fluid, then the velocity of the fluid flow should be
uniform at each cross section and equal to the mean flow veloc-
ity; consequently, Eq. (16) should be exactly similar to the well-
known FSI equation derived by Paidoussis [31]. Eq. (16), which
is defining the vibrational characteristic of a pipe conveying vis-
cous fluid, would seem different from the equation of motion of
pipe conveying viscous fluid extracted in Refs. [12,13] and by
now, used by several researchers. This equation was derived as
follows [13]:
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o*w o*w >*w , W *W
El P +mcat2+mf<2VX(r)axat+Vx(r) ) +W
oW Pw
‘Af“<m+‘“(” ax3> =0 a7

We believe that the viscosity parameter could not appear in the
FSI equation. There are major reasons as discussed in the following
paragraphs. In the procedure followed by references [12,13], the
authors investigated that A;(0P,/or) is the force acting in the direc-
tion of the flexural displacement due to fluid flow. However, we are
convinced that this expression should be modified and this would
be the main reason of appearing the viscosity parameter in the
equation of motion. According to the previous discussion about Na-
vier-Stokes’ equation as well as Eq. (15), we conclude that the
force due to fluid flow in the lateral direction could be calculated
by summing pressure gradient and shear stresses due to viscosity,
which are equal to —Ai(9P/dr) + Aipu(PPW/Ox>Dt + V(r)
(W /8x3)); however, the authors of the references [12,13] used
only the pressure gradient as a lateral force. Therefore, they ob-
served the viscosity effects on the other side of Eq. (15) and it is
the main reason of appearing viscosity parameter in the equation.
We could verify our results by reference [31]. Paidoussis [30] de-
rived the linear equation of motion for a pipe conveying fluid by
the both Newtonian and the Hamiltonian approaches. In this study,
we use his Newtonian approach. The free body diagram of pipe and
fluid element are plotted as Fig. 1 [31].

We observe in reference [31] that the fluid element is subjected
to various forces such as: (1) Pressure forces, where the pressure
(P) because of frictional losses; (2) reaction forces of the pipe on
the fluid normal to the fluid element, Fds, and tangential to it, gSés,
associated with the wall shear stress; and (3) gravity forces Mgés in
the x direction.

The term gSds is due to shear stress of fluid flow and this shear
stress is because of viscosity of the fluid flow. From this term we
may conclude that Paidoussis [31] considered the effect of viscos-
ity of the fluid flow to derive the governing equation of motion. If
we follow his procedure to realize the resulting equation of motion
for FSI, we find that this term disappeared because it is an internal
force. In fact, if the pipe and the fluid conveyed are taken as a free
body, the frictional forces exchanged between them are acting as
internal forces, and hence they should not appear in the resulting
equation of motion. Moreover, Paidoussis emphasized in his differ-
ent publications [32,33] that “It should be stressed that the ab-
sence of viscous flow terms in the well-known FSI equation does

pA

Fés

Mgéss A(p +‘;_ls)6$)

+

not signify that the model is inviscid; it is indeed based on a 1D vis-
cous flow model”. Guo et al. [34], focusing on the effects of fluid
viscosity on the governing equation of motion of pipes conveying
fluid and on the critical velocities for both divergence and flutter,
would confirm our previous results. It is noted that the viscosity
of the fluid may have two different effects on the FSI equation:
(i) the friction between the fluid and the pipe wall and (ii) the
non-uniformity of flow velocity distribution across the cross-sec-
tion. The first effect was noted and accounted for by Benjamin
[35] and was later elaborated upon by Paidoussis [31]. From their
articles we may conclude that the shear traction over the pipe and
pressure-loss due to viscosity exactly cancel out, and hence they
should not explicitly appear in the FSI equation.

Finally, according to our investigation about how to exert the
F.x; into the equation of flexural vibration of an Euler-Bernoulli
beam and discussion quoted by several references [31-35], we
may conclude that Eq. (16) should be valid for viscous and non-vis-
cous fluid flow. In the following section we try to develop an inno-
vative 1D coupled FSI equation by considering slip condition on the
pipe walls and we will reveal a considerable change in the first
divergence critical flow velocity in comparison with plug flow
theory.

3. Innovative 1D coupled FSI equation by considering size
effects

3.1. Size effect of nano-flow

Regarding the procedure we utilized to calculate theF.,, we
could benefit from the compatibility condition at the point of con-
tact between the CNT and the internal fluid to determine the veloc-
ity of the fluid flow. Due to applying a material derivative at a
contact point of the fluid and CNT wall, it would be logical that
the V,(r) appearing in the previous equation should be the velocity
of the fluid flow along the longitudinal direction touching the CNT
wall [12]. The no-slip condition corresponding V,(r) = 0, would be
applied to the walls of the nano-tube as a result of the viscosity
of the fluid and consequently, this would imply that the two re-
lated terms in Eq. (16) should vanish. If we consider a plug flow
theory, V,(r) would be equal to a mean flow velocity of the fluid
flow at each section and then we have the plug flow-based FSI
equation. Another way is to consider a slip condition at the CNT
wall which could be an acceptable idea for a nano-flow. The Knud-
sen number (Kn), i.e., the dimensionless ratio of the mean free path

Fds

\ T+a ds
°
NS
a
M+ ——3§s

mgds

Fig. 1. Forces acting on an element of the fluid (left side); forces and moments on the corresponding element of the pipe (right side).
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of the fluid molecules to a characteristic length of the flow geom-
etry, is used as a discriminant for identifying the different flow re-
gimes [35]. Based on Kn, four flow regimes may be identified and
for 1072 <Kn < 0.1 the slip flow regime could be considered [36].
For CNTs conveying fluid, the Kn may be larger than 10~2; conse-
quently, the assumption of no-slip boundary condition should be
no longer valid. Beskok and Karniadakis [37] proposed a formula-
tion for a slip velocity model, which is claimed to be rather a more
representative relation for correlating to the experimental data:

2-0,\(_kn /v
V=V = ( 7 ) (m) (%)R "

where b is a general slip coefficient. By choosing b= —1, one can
make the effect of slip condition as accurate as a second-order term
[37]. Vs is the slip velocity of the fluid near the CNT wall surface, V,,
is the axial velocity of the solid wall as a rigid body and n is an out-
ward unit vector normal to the CNT wall surface. g, is tangential
momentum accommodation coefficient and is considered to be
0.7 for most practical purposes [38]. The solution of Navier-Stokes’
equation in the axial direction of an orthogonal cylindrical coordi-
nate system for a pipe is as follows [30]:

1 (0P,
v_@(&> +C (19)

where r and x are, respectively, the radial and longitudinal coordi-
nates of both the tube elastic axis and the axial flow, and P is the
pressure. By considering V,,=0 and replacing (oV/on).-g by
—R x (8V]|0 1)=g in Eq. (18), and computing (8V/or)—z. from Eq.
(19), we could rewrite the slip velocity at the CNT wall as:

v (30) (27 () )

where R is the inner radius of the tube. Due to a tendency for elim-
inating the dependency of Eq. (20) to the pressure gradient, we need
to calculate the mean flow velocity. Therefore, if we consider the
slip velocity at the wall of nano-tube for calculating the constant
Cin Eq. (19) and integrate Eq. (19) over the cross sectional area of
the pipe, the average flow velocity is as follows:

R? /0P 2 -0, Kn
Vo =g (30) | +4(57) (7| @

For simplicity of the following equations, we define a new
parameter as:

L (2-0,\( Kn
V*4< 0',, ><1+Kn> (22)

If we compute the pressure gradient from Eq. (21) and replace it
into Eq. (20), we can rewrite the slip velocity as follows:

V, = ]vaa,,g (23)

By substituting Eq. (23) as V,(r) into Eq. (16), the 1D coupled FSI
equation of motion for CNT conveying fluid can be expressed as:

o'w >PwW y >PwW
EI 8X4 + (mg + mf)W‘F sz (m) Vaygm

2 2
Y 2 OW
+mf<l w) Vi 5 =0 (24)

To the best of authors’ knowledge, Eq. (24) should be an innova-
tive analytical approach to take into account a 1D coupled FSI
equation by considering the nano-size effect of nano-flow which
is more accurate than considering a plug flow for the nano fluid
flow. It should be noted that if the no-slip condition corresponding
Kn =0, this would imply that the parameter y/(1+7) is equal to

zero and consequently two related terms in Eq. (24) should vanish;
therefore, Eq. (24) should be valid just in a slip regime where
Kn > 0.001. As we would observe from Fig. 2, if the value of Kn
could increase significantly, the slip velocity of the fluid flow on
the CNT walls become greater and the profile of the velocity distri-
bution becomes uniform in the cross sectional area of the pipe and
the corresponding parameter y/(1 + ) become equal to one. Conse-
quently, we approach a plug flow theory and the critical flow
velocity approaches the value predicted by plug flow theory which
is .

3.2. Size effect of nano-structure

Classical continuum mechanics theories have been used in a
wide range of fundamental problems and applications in mechan-
ical engineering. These theories are utilized for scales ranging
roughly from millimeters to meter. In the last few years, standard
elasticity formulae have also been used to describe mechanical
behavior at the nano scale. Experimental evidence and observa-
tions with newly developed equipment have suggested that classi-
cal continuum theories do not suffice for an accurate study of the
corresponding mechanical phenomena. The inability of classical
continuum mechanics theories would because of the lack of an
internal length for characterizing the underlying nano-structure
from the constitutive equations. Consequently, several researchers
during 19th century devoted their attention to enrich the classical
continuum theories by considering internal characteristic lengths
for nano-structures and they could succeed in developing novel
non-classical continuum mechanics for investigating the size-ef-
fects in nano-structures. In the following subsections of this article,
we would utilize different gradient elasticity formalisms.

3.2.1. Strain/inertia gradient theory

In one of the higher-order continuum theories developed by
Mindlin [39], the strain energy is considered as a function of the
first and second-order gradients of strain tensor. This theory was
then reformulated and renamed strain gradient theory by Fleck
and Hutchinson [40]. In the strain gradient theory, the strain gradi-
ent tensor is decomposed into two parts of a stretch gradient ten-
sor and a rotation gradient tensor. The strain gradient theory has
been successfully applied to analyze the static and dynamic
mechanical behavior of micro and nano-structures. The strain gra-
dient formalism combined with inertia gradients was introduced
by Askes and Aifantis [41] and is described as:

[ Y
n

= " [——Present model
Y:24.71 — Plugﬂow model

N
>

[
o
L

~
<

i
T

X:0.02
Y.3.142

First dimensionless mean critical flow velocity

2 3 4 5
Knudsen Number (Kn)

)
S
~

Fig. 2. The variation of the first dimensionless mean critical flow velocity versus Kn
for plug flow theory and present model.
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P(ﬂi - I,znui,mm) = Ciju <uk,il - Ifukﬂmm) (25)

where p is the mass density of nano-structure, Gy, are Cartesian
components of elasticity tensor and u the denotes displacement.
Eq. (25) contains two length scales, [, and L, which are related to
the inertia and strain gradients, respectively. The constitutive rela-
tion for 1D Euler-Bernoulli beam theory, is obtained by equating
i=3 and using the linearized strain-displacement relations of Eu-
ler-Bernoulli kinematics. Accordingly, for 1D strain-flexural curva-
ture relation, we have:

Zazw

X2

It is found from Eq. (25) that the axial stress in CNTs may be
written as:

2 2
aE(e—F@)ﬂolz@ (27)

g=—

(26)

S OX2 om 52

where ¢ and ¢ are, respectively, flexural stress and strain in the
beam. The bending moment M is given by:
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(28)

By substituting the second derivative of Eq. (28) and F,,, as cal-
culated in Section 2.2, into Eq. (1), the 1D coupled equation of mo-
tion of CNT conveying fluid, considering strain/inertia gradient
theory, can be expressed as:

6 2 2
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If we substitute y/(1 +7) by one, then Eq. (29) would become
the one given by Wang [42].

3.2.2. Stress gradient (nonlocal theory of Eringen)
According to Eringen [43], the nonlocal stress tensor ™" at
point x is expressed as:

o = / K(|x — x|, 7)o" (x)dx (30)

where ¢'(x) is the classical, macroscopic stress tensor at point x
and the kernel function K(|x' — x|,7) represents the nonlocal mod-
ulus, |x' —x| is the distance and 7 is the material constant that
depends on internal and external characteristic lengths. Eq. (30)
represents the weighted average of contribution of the strain field
of all points in the body to the stress field at a point. It means
that the stress field at a point x in an elastic continuum is depen-
dent not only on the strain field at the point under consideration
but also on the strains at all other points of the body. The inte-
gral constitutive relation in Eq. (30) makes the elasticity equation
difficult to solve. However, it is possible to represent an equiva-
lent differential form as [43]:

(1-Pv*e™ =g (31)

where I is the internal characteristic length and V? is the Laplacian
operator. The relationship between the bending moment resultant
and the flexural displacement of the Euler-Bernoulli beam theory,
take the following special form [44]:
2 2
20°M oW
M -1 —7—EIW (32)

by substituting 8*M/dx? from Eq. (1) into Eq. (32) we have:

2
2 oW
M—l(mc— 7

A%
o Fm> El— (33)
by substituting the second derivative of Eq. (33) and F, repre-
sented in the previous sections into Eq. (1) the 1D FSI equation
could be expressed as:
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If we choose y/(1+7y) equal to one, then Eq. (34) would re-
duce to those given by Tounsi et al. [45] and Wang [46]. It
should be noticed that based on [47,48], in this study we have
utilized “partial” nonlocal elasticity, due to ignoring higher-order
boundary conditions derived from a variationally consistent for-
mulation, while using nonlocal constitutive law, as a part of
equilibrium (static/dynamic), and kinematic (geometric or com-
patibility) relations. By the same authors, recent trend of non-
local formulation has been named “exact” nonlocal elasticity,
because higher-order terms are derived for both differential
equations and boundary conditions of nonlocal boundary value
problem. Wang [49] developed the higher-order governing equa-
tion and the boundary conditions based on exact nonlocal stress
model to examine the vibration properties and stability of nano-
tubes conveying fluid.

The resultant equation may be rendered dimensionless through
the use of dimensionless parameters as:
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The dimensionless equation by considering the strain/inertia
gradient and slip condition is as follows:
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The dimensionless equation by considering the nonlocal contin-
uum theory and slip condition is as follows:
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To the authors’ knowledge, two last equations are innovative
analytical approaches to take into account a 1D coupled FSI equa-
tion by considering the size effects of nano-flow and nano-struc-
ture simultaneously. Based on Askes and Aifantis [50], the results
predicted by the strain/inertia gradient theory are in good agree-
ment with those obtained by MD simulations; moreover, they
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would reveal that strain/inertia gradient model for dynamical anal-
ysis of nano-tubes would be more reliable than other continuum
theories.

4. Approximate solution

In order to solve the FSI equation, to calculate the CNT complex-
valued eigen-frequencies, and to extract the divergence instability
conditions, we use Galerkin’s approximate solution method. This is
approximate because of the finite number of terms utilized in the
series solution expansion. Let:

N
N(ET) 2 Pa(8)q,(T). (38)
n=1

where g,(7) are the generalized coordinate of the discretized system
and @,(¢) are the comparison functions here, the eigen-functions of
a beam with the same boundary conditions but no interaction be-
tween the fluid and structure. It is presumed that the series could
be truncated at a suitably high value of n. It is noted that in this
approximate method we need to choose comparison functions that
satisfy the essential and natural boundary conditions of a CNT. In
this work, we study the first divergence-type stability of a pin-
ned-pinned CNT and the essential and natural boundary conditions
for a simply-supported beam are as follows:

. on .
n(¢ 1) =0 and 672:0 at £=0,1 (39)
for this type of boundary condition, @,(¢) are considered as:
Py () = sin(nmé) (40)
We assume the generalized coordinates q,(7), n=1,2,...,N

vary as simple harmonic motions (SHMs) for a free vibration
response:

qn(r) = Qn exp(snr) (41)

where Q, is constant amplitude of nth generalized coordinate of
CNT free vibrations and s, denotes the nth mode complex-valued
eigen-frequency, whose real part shows the decaying rate in the
nth mode (modal equivalent viscous damping) and the imaginary
part show the nth modal damped natural frequency of the nano-
beam.

4.1. Discritization

In this subsection, we use Galerkin weighted-residual technique
for simply supported beam, and using dimensional equations. In
this approximate method, we use the main governing differential
equations of motion to compute the residue. For this purpose we
start discritizing by choosing one generalized coordinate. We sub-
stitute the approximate function of 7(¢,7) by sin (7¢) x q4(7), to the
fundamental differential Eq. (36) and Eq. (37) to calculate the
residual. Then we multiply this residual by a weight function that
is called test function. Herein, the comparison and the weight func-
tions are the same and are selected as the first mode eigen-func-
tion (sin (¢7)). The resulting weighted residual is then integrated
over the domain of the structure. This integrated weighted residual
is then set to zero. It means that the error in the subspace spanned
by trial functions is nullified and only the residual error orthgonal
to this subspace would remain. This residual could have compo-
nents in the complementary subspace of exact solution not
spanned by the information subspace. The trial eigen-functions
play the role of basis functions that span the complementary space
of the infinite-dimensional space spanning exact solution. Conse-
quently, the resulting discretized governing equations are as
follows.

Strain/inertia gradient:
7 \? 1 1
(7754 - <m> U2, + 7'561?) 56 (1) +5 (220 +1)d1 (1) = 0

Nonlocal Eringen:

o (7 g a2 7 Ve 1
T -7 m qugfn(b m Uavg qu(T)

+%(¢>znz+1)q1 (1)=0 (43)

The coefficient of q;(7), is denoting the sum of elastic stiffness
and geometric stiffness parameters and the coefficient of q(7) is
representing the equivalent mass parameter.

4.2. Divergence analysis by novel coupled FSI equation

In this subsection, we arrange for a solution to discover the crit-
ical flow velocity at which the first divergence instability could oc-
cur by utilizing the developed coupled FSI equation in this article.
Herein, we consider the effect of investigating slip velocity at the
wall of CNT for different values of Kn numbers as well as the size
effects of nano-structure via strain/inertia gradient and nonlocal
continuum theories. According to Paidoussis [31], if the equivalent
stiffness of a system can become zero for some critical value of
fluid flow velocity, then the overall stiffness of the system vanishes
which signifies that the divergence instability has occurred in the
system. According to Eqs. (42) and (43), the equivalent stiffness,
which is the addition of the flexural stiffness and geometric stiff-
ness due to centrifugal effect of fluid velocity, for a pinned-pinned
CNT conveying fluid are as follows:

Strain/inertia gradient:

Keg=1* — 7 (%y)zuﬁyg 4782 (44)
Nonlocal Eringen:
’)) 2 V 2
Keg = 7t* — (1—+y> Uz, — ¢’ <m> Ui (45)

If we consider K., from Eq. (44) equal to zero, then we can
calculate the first-mode critical flow velocity of the divergence-
type instability by considering the strain/inertia gradient theory
as:

1+
Uasg = n(%) NI (46)

In addition, the first-mode critical flow velocity of the diver-
gence-type instability by investigating the nonlocal continuum
theory is as follows:

(7 )]
Ua,,gfn< ; ) i1 (47)

We conclude from Eqs. (46) and (47) that the first-mode critical
average flow velocity would depend on Kn through the parameter y
and it would also depend on the size effect of nano-structure with
/s and ¢ due to considering strain/inertia gradient and nonlocal
theories.

5. Results and discussion

In this section, we utilize the approximate solution of Galerkin
for simulating numerically the behavior of fluid passing through
the nano-pipe. We may consider the material and geometrical
properties of nano-tube as follows: CNT Young’s modulus E =1
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TPa; thickness h = 0.1 nm; inner radius R; = 0.2 nm; CNT mass den-
sity penr=2.3 g cm™>; mass density of acetone pge =0.79 g cm >
and mass density of air pg;=0.001169 gcm*3. In the numerical
simulations, we utilized 1D basis function space to analyze only
the first-mode divergence stability of CNT conveying fluid by the
novel governing differential Eqs. (36) and (37).

5.1. Validation by no-slip condition formulation

In this subsection, we compare our numerical results with those
of Paidoussis [31]. Since Paidoussis [31] investigates the plug flow
theory, we need to substitute the coefficient y/(1 + ) by one in Eq.
(24) and then discretize the equation of motion for validation.
Fig. 3 shows how the imaginary parts of the fundamental eigen-
frequency of a pipe would change for various values of average
flow velocity of acetone, through a pinned-pinned pipe. In this
case, the average flow velocity is assumed to be based on classical
Navier-Stokes’ continuum mechanics. We observe from this figure
that as the mean flow velocity would increase from zero to a crit-
ical value, the resonant frequencies approach zero. For critical flow
velocities, the resonant frequencies become zero; consequently,
the pipe stiffness would disappear, and the divergence or column
buckling mode occurs. As we observe from Fig. 3 we could see that
the dimensionless mean critical flow velocity for the first-mode
divergence would be equal to 7, as we would expect from the
observations of Paidoussis [31].

5.2. Effect of Kn on the divergence-type stability

In this subsection, we investigate the size effect of nano-flow
with a nonzero Kn on the dynamic response of a nano-pipe convey-
ing a liquid, herein, acetone as well as a gas, herein, air. According
to Rashidi et al. [23] the range of Kn could vary from 0.001 to 0.01
for a liquid nano-flow and 0.001 to 2 for a gas nano-flow in slip
flow regime. Table 1 discloses the dependency of dimensionless
critical flow velocity to the diverse values of Kn as well as compares
different models. By comparing the values of critical flow velocities
for different Kns, we might notice that the results of the innovative
coupled FSI model developed here would seem drastically different
from those of other FSI models, which is based on a plug flow the-
ory as well as a velocity correction factor for considering the slip
condition, as developed in [25]. Considering the slip velocity and
coupled Eq. (24) could lead to appreciable effects on the general
dynamic response of the CNT conveying nano-flow. For Kn equal
to 0.001 (the threshold value of Kn for having a slip regime), the
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Fig. 3. Imaginary parts of dimensionless fundamental eigen-frequencies of pinned-
pinned nano-tube against dimensionless mean flow velocity for acetone consider-
ing plug flow theory.

Table 1
Variation of the first-mode dimensionless mean critical flow velocity against the
variation of Kn for three different models including slip condition.

Kn Dimensionless mean critical flow velocity (Uayg)

Present model Polard’s model® Roohi’s model®

0 - T T

0.001 135.761 0.9927 0.9937
0.005 28.067 0.9637 0.9657
0.01 14.607 09277 0.931xn
0.05 3.83n 0.7127 0.70271
0.1 2.54n 0.5497 0.4957
0.5 1.407 0.187n 0.1057
1 1.27n 0.0997 0.0617
1.5 1.237 0.0667 0.0497
2 1.207m 0.0507 0.0437

? Polard’s model for viscosity: Cr(Kn) = TLI@@ 2
b Roohi’s model for viscosity: Cr(Kn) = w
27-+0.75Kn +19 98Kn

dimensionless critical flow velocity would be about 140 times
greater than that of predicted by Paidoussis [31], which is equal
to m. Table 1 illustrates that the first-mode divergence instability
phenomena might happen at a higher value of critical flow veloc-
ity. It means that coupled FSI model in this article predicts that
pipe conveying nano-flow would lose its stability remarkably later
than that predicted by continuum plug flow theory, and that plug
flow theory complemented with the slip condition at the CNT walls
such as Kaviani and Mirdamadi’s model [25]. In that model, they
used two different viscosity models of Roohi and Polard [25]. Fur-
thermore, we observe from Table 1 that the divergence phenomena
might happen in a lower critical flow velocity, for a higher Kn.
Fig. 4 illustrates the first-mode divergence instability and the
imaginary parts of fundamental eigen-frequencies of pinned-pin-
ned nano-tubes conveying acetone, for four different models.
When the natural frequencies reduce to zero, the system loses sta-
bility by divergence and the corresponding flow velocity is defined
as the critical flow velocity. This figure, which is drawn by consid-
ering the different values of dimensionless mean flow velocities
and eigen-frequencies and the maximum value of Kn for a liquid
nano-flow (Kn = 0.01), could reveal that the present model predicts
the first-mode divergence instability would occur remarkably later
than that predicted by continuum plug flow theory. Besides, Kavi-
ani and Mirdamadi’s model [25], which is based on defining the
velocity correction factor (VCF), as well as Roohi and Polard’s vis-
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Fig. 4. Imaginary parts of dimensionless fundamental eigen-frequencies of pinned-
pinned nano-tube conveying acetone, against dimensionless mean flow velocity for
continuum plug flow and three models based on slip condition with maximum
value of Kn for liquid nano-flow (Kn = 0.01).
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Fig. 5. Imaginary parts of dimensionless fundamental eigen-frequencies of pinned-
pinned nano-tube conveying air, against dimensionless mean flow velocity for
continuum plug flow and three models based on slip condition with maximum
value of Kn for gas nano-flow (Kn = 2).

cosity models disclose that considering the slip boundary condi-
tion would advance the first-mode flow instability. Due to the fine
differences, in Fig. 4 we depict the magnified parts around the first-
mode divergence instability for the models discussed in [25]. In
this figure, we observe that for the given value of Kn (Kn = 0.01),
Polard’s model predicts that the first-mode divergence instability
could occur a little sooner than that predicted by Roohi’s model.

Fig. 5 shows the same phenomena and results for a pinned-pin-
ned nano-tube conveying gas, herein, air by considering a contin-
uum plug flow theory and the other three models based on slip
boundary condition for Kn equal to 2, which is the highest accept-
able value for a slip regime of gas nano-flow. According to this fig-
ure, we observe again that our innovative model proposes a higher
value for the critical flow velocity. However, for a gas nano-flow
the critical flow velocity is closer to that of a plug flow theory, in
comparison with liquid nano-flow. In addition, for a gas nano-flow,
Roohi’s model predicts that the first-mode divergence instability
could occur a little sooner than that predicted by Polard’s viscosity
model but there is a little difference between Roohi and Polard’s
models.

5.3. Effects of size-dependent continuum theories on the divergence-
type stability

In this subsection, we consider the effect of size-dependent con-
tinuum theories such as strain/inertia gradient and nonlocal con-
tinuum theories on the vibrational behavior of carbon nano-
tubes conveying fluid in a continuum plug flow regime. Before
going to the details of figures, we ought to discuss the range of
length scales, I, Is and [ which are respectively the characteristic
lengths in relation to the inertia gradients, strain gradient and
stress gradient (nonlocal theory). According to Askes and Aifantis
[50] large range of values for these coefficients are possible. In
our studies we use Iy=1=0.0355 nm and I,;, = 10l for CNT (20,20)
according to Askes and Aifantis [50]. In our work the length of
the beam is in a nano-scale and is considered to be L=2R;
(L = 0.4 nm), consequently, the maximum values of dimensionless
parameters s and ¢ are 0.1.

Fig. 6 illustrates the first-mode divergence instability of pin-
ned-pinned nano-tube conveying fluid for four different theories;
namely, the strain/inertia gradient theory, the nonlocal theory,
the classical continuum theory, and the strain gradient theory
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Fig. 6. Imaginary parts of dimensionless fundamental eigen-frequencies of pinned-
pinned nano-tube conveying acetone, against dimensionless mean flow velocity for
classical continuum theory and three models based on size-dependent continuum
theories with maximum value of dimensionless characteristic lengths correspond-
ing to the strain gradient (4; = 0.1), inertia gradient (4, = 104,), and stress gradient
(¢ =0.1), without considering slip regime.

where the inertia gradient is ignored (I, =0 or A, =0). Further-
more, we consider the maximum values for /; and ¢ which are
0.1 and 4, =10/ for strain/inertia gradient theory. When the
dimensionless mean flow velocity is equal to zero (Ugyg=0) the
natural frequency predicted by the present strain gradient theory
is greater than that predicted by the classical continuum theory
as opposed to the natural frequency predicted by the nonlocal con-
tinuum theory which is smaller in comparison with the value pre-
dicted by the classical theory. The natural frequency predicted by
strain/inertia gradient theory is drastically smaller in comparison
with the three mentioned theories. For pipes with supported ends,
the natural frequencies are diminished with increasing flow veloc-
ities. As we would observed from Fig. 6 strain and strain/inertia
gradient theories predicted the same dimensionless mean critical
flow velocity, which is greater than that predicted by classical con-
tinuum theory as we would observe from Eq. (46). It should be
mentioned that these theories propose that pipe conveying fluid
remains more stable in contrast with classical theories. However,
as we would observe from Eq. (47) the nonlocal continuum theory
suggests that pipe conveying fluid loses its stability sooner and the
critical value is smaller than that of classical theory which is 7.

5.4. Simultaneous effects of size-dependent continuum theories and Kn

We would analyze in this section small-scale effects on both
elastic structure and fluid dynamic responses of CNT under liquid
and gas nano-flow. Fig. 7 shows the vibration frequency of a CNT
conveying fluid, herein, acetone. The frequency for the situations
where characteristic lengths correspond to the highest values of
Js=¢=0.1, in=104 and Kn=0.01 for representing size-depen-
dent effects, as well as the values of /s = ¢ = 4, = 0 for classical con-
tinuum theory with plug fluid flow. By considering the present
model for investigating the size effects of nano-flow and nano-
structure, the value of dimensionless mean critical flow velocity
of the first-mode divergence would be remarkably greater. When
we use the innovative 1D FSI equation by considering the slip re-
gime at the CNT walls and strain/inertia or strain gradient theories,
the amount of increase in the critical flow velocity would be great-
er in comparison with the situation where we investigate the effect
of each of the size-dependent continuum theories and the Kn, sep-
arately. In fact, the superposition would not govern. Since the val-
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Fig. 7. Imaginary parts of dimensionless fundamental eigen-frequencies of pinned-
pinned nano-tube conveying acetone, against dimensionless mean flow velocity for
continuum plug flow theory and three models based on size-dependent continuum
theories with maximum value of dimensionless characteristic lengths correspond-
ing to the strain gradient (/s = 0.1), inertia gradient (4,, = 104), and stress gradient
(¢ =0.1) including slip flow regime with maximum value of Kn for liquid nano-flow
(Kn=0.01).

ues of increase in the first-mode is not equal to the effect of the val-
ues of increase for two superimposed cases. For example, in the
first-mode the amount of increase due to slip regime (Kn=0.01)
and size-dependent continuum theories (Js=¢ =0.1,4;,=104)
are respectively, 42.72 and 0.151. The superposition of these two
values is not equal to the amount of increase when we consider
two effects superimposed, which is 44.92 (42.72 + 0.151 # 44.92).
We may conclude that there should not be a linear relationship be-
tween the effects of these dimensionless parameters. The nonlocal
continuum theory would predict reduction in the dimensionless
mean critical flow velocity; nevertheless, by studying the simulta-
neous effects of nonlocal and slip regime, the critical value of flow
velocity could increase significantly and a pinned-pinned system
would lose its stability strikingly delayed. However, we may only
declare, in a liquid nano-flow, that the Kn would be playing a more
important role then the dimensionless nonlocal parameter. Indeed,
Kn completely nullifies the effect of nonlocal parameter in the
reducing the critical velocities.

Fig. 8 shows the vibration frequency of a CNT conveying gas,
herein, the air for the situations that the characteristic parameters
are considered with the highest value (As=¢ =0.1, 4, =10/ and
Kn =2), as well as for a classical continuum theory with plug fluid
flow. When we study the effects of slip regime and strain/inertia or
strain gradient theory simultaneously the amount of increase in
the mean critical flow velocity is 0.816, which is greater than those
values of increase by considering the slip regime and strain gradi-
ent theory, which are respectively, 0.634 and 0.151. We may con-
clude that the characteristic lengths correspond to the strain/
inertia gradient theory (/m, 4s) could cancel out some effect of Kn.
It should be better to say that by increasing the value of Kn the crit-
ical value of mean flow velocity approaches the value predicted by
the model based on standard elasticity theory and plug flow but
the strain gradient theory opposes and predicts a greater value
for the critical velocity as well as the system remains more stable.
In the case of nonlocal theory with slip flow regime, the nonlocal
parameter causes the critical value becomes closer to that of pre-
dicted by plug flow theory. It should be better to say that by con-
sidering only the Kn the amount of increase in the critical flow
velocity is 0.634 and by investigating the simultaneous effects this
amount is equal to 0.461. According to the discussion and the re-
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Fig. 8. Imaginary parts of dimensionless fundamental eigen-frequencies of pinned-
pinned nano-tube conveying acetone, against dimensionless mean flow velocity for
continuum plug flow theory and three models based on size-dependent continuum
theories with maximum value of dimensionless characteristic lengths in relation to
strain gradient (/s =0.1), inertia gradient (4, = 10/), and stress gradient (¢ =0.1)
including slip flow regime with maximum value of Kn for gas nano-flow (Kn = 2).

sults of Fig. 8 we could easily guess that in a gas nano-flow, Kn
has more contribution in the variation of critical velocity than non-
local parameter.

6. Conclusions

In this study, we investigated the effect of viscosity of a fluid
flow in a channel and the interaction between the fluid and struc-
ture. We reappraised the governing differential equation of pipe
conveying viscous fluid derived and used by several researchers
during the last decade. In this article, we utilized the prominent
principles of fluid mechanics such as Navier-Stokes’ equation as
well as several valuable references in the field of FSI to reveal that
the viscosity of the fluid flow could not appear explicitly in the
equation of motion of a pipe conveying fluid. Accordingly, we pro-
posed an innovative model for the 1D coupled vibrations of carbon
nano-tubes (CNTs) conveying fluid using the slip regime of fluid
flow at the walls of CNT and some size-dependent continuum the-
ories. The first-mode dimensionless mean critical flow velocity
predicted by the innovative model for considering the slip regime
with classical continuum theories, which would show a consider-
able increase, as opposed to those for plug flow theory without
considering slip boundary condition and even with this effect.
Therefore, this innovative model, presented in this article would
propose that CNT conveying nano-flow could remain more stable,
i.e.,, the critical average velocity of the fluid flow at which the
first-mode divergence instability would occur, could be extremely
greater in comparison with that of predicted by a plug flow theory.
In addition, a CNT conveying liquid nano-flow could remain more
stable in contrast with a gas nano-flow. Moreover, as the Kn num-
ber would increase, this innovative model would approach the
plug flow theory and the critical flow velocity predicted by both
models would become the same. In the case of studying the effect
of size-dependent continuum theories, we would observe that the
natural frequency predicted by the strain gradient theory is greater
than that predicted by the classical continuum theory, as opposed
to the natural frequency predicted by the nonlocal continuum the-
ory, which is smaller in comparison with the value predicted by the
classical theory. The natural frequency predicted by strain/inertia
gradient theory is drastically smaller in comparison with the three
mentioned theories. Besides, the dimensionless mean critical flow
velocity predicted by strain/inertia or strain gradient theories
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would be greater than that predicted by classical continuum the-
ory as opposed to the value suggested by nonlocal theory which
is smaller than that predicted by classical theory. By considering
the Kn and size-dependent continuum theories simultaneously,
we may conclude that Kn has more contribution in the variation
of critical velocity than size-dependent parameters. Moreover, in
a liquid nano-flow we may declare that Kn thoroughly nullify the
effect of nonlocal parameter and a pinned-pinned system remains
considerably stable in contrast with plug flow theory. For a gas
nano-flow where the value of Kn is increasing the parameters with
respect to the strain gradient theory opposes the effect of Kn and
increase the value of dimensionless critical flow velocity; however,
the nonlocal parameter makes the critical value closer to that pre-
dicted by FSI equation based on classical theory and plug flow.
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